Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Virol ; 97(4): e0012823, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2264675

ABSTRACT

Coronavirus membrane protein is a major component of the viral envelope and plays a central role in the viral life cycle. Studies of the coronavirus membrane protein (M) have mainly focused on its role in viral assembly and budding, but whether M protein is involved in the initial stage of viral replication remains unclear. In this study, eight proteins in transmissible gastroenteritis virus (TGEV)-infected cells coimmunoprecipitated with monoclonal antibodies (MAb) against M protein in PK-15 cells, heat shock cognate protein 70 (HSC70), and clathrin were identified by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF MS). Further studies demonstrated that HSC70 and TGEV M colocalized on the cell surface in early stages of TGEV infection; specifically, HSC70 bound M protein through its substrate-binding domain (SBD) and preincubation of TGEV with anti-M serum to block the interaction of M and HSC70 reduced the internalization of TGEV, thus demonstrating that the M-HSC70 interaction mediates the internalization of TGEV. Remarkably, the process of internalization was dependent on clathrin-mediated endocytosis (CME) in PK-15 cells. Furthermore, inhibition of the ATPase activity of HSC70 reduced the efficiency of CME. Collectively, our results indicated that HSC70 is a newly identified host factor involved in TGEV infection. Taken together, our findings clearly illustrate a novel role for TGEV M protein in the viral life cycle and present a unique strategy used by HSC70 to promote TGEV infection in which the interaction with M protein directs viral internalization. These studies provide new insights into the life cycle of coronaviruses. IMPORTANCE TGEV is the causative agent of porcine diarrhea, a viral disease that economically affects the pig industry in many countries. However, the molecular mechanisms underlying viral replication remain incompletely understood. Here, we provide evidence of a previously undescribed role of M protein in viral replication during early stages. We also identified HSC70 as a new host factor affecting TGEV infection. We demonstrate that the interaction between M and HSC70 directs TGEV internalization in a manner dependent on CME, thus revealing a novel mechanism for TGEV replication. We believe that this study may change our understanding of the first steps of infection of cells with coronavirus. This study should facilitate the development of anti-TGEV therapeutic agents by targeting the host factors and may provide a new strategy for the control of porcine diarrhea.


Subject(s)
Clathrin , Coronavirus M Proteins , Endocytosis , HSC70 Heat-Shock Proteins , Transmissible gastroenteritis virus , Virus Internalization , Transmissible gastroenteritis virus/physiology , Clathrin/metabolism , Coronavirus M Proteins/metabolism , Cell Line , Humans , Animals , Virus Replication
2.
Front Cell Infect Microbiol ; 12: 849017, 2022.
Article in English | MEDLINE | ID: covidwho-1952255

ABSTRACT

SARS-CoV-2 is an emerging virus from the Coronaviridae family and is responsible for the ongoing COVID-19 pandemic. In this work, we explored the previously reported SARS-CoV-2 structural membrane protein (M) interaction with human Proliferating Cell Nuclear Antigen (PCNA). The M protein is responsible for maintaining virion shape, and PCNA is a marker of DNA damage which is essential for DNA replication and repair. We validated the M-PCNA interaction through immunoprecipitation, immunofluorescence co-localization, and PLA (Proximity Ligation Assay). In cells infected with SARS-CoV-2 or transfected with M protein, using immunofluorescence and cell fractioning, we documented a reallocation of PCNA from the nucleus to the cytoplasm and the increase of PCNA and γH2AX (another DNA damage marker) expression. We also observed an increase in PCNA and γH2AX expression in the lung of a COVID-19 patient by immunohistochemistry. In addition, the inhibition of PCNA translocation by PCNA I1 and Verdinexor led to a reduction of plaque formation in an in vitro assay. We, therefore, propose that the transport of PCNA to the cytoplasm and its association with M could be a virus strategy to manipulate cell functions and may be considered a target for COVID-19 therapy.


Subject(s)
COVID-19 Drug Treatment , Coronavirus M Proteins , Proliferating Cell Nuclear Antigen , Coronavirus M Proteins/metabolism , Humans , Proliferating Cell Nuclear Antigen/metabolism , SARS-CoV-2
3.
PLoS One ; 17(2): e0263582, 2022.
Article in English | MEDLINE | ID: covidwho-1910522

ABSTRACT

The membrane protein M of the Porcine Epidemic Diarrhea Virus (PEDV) is the most abundant component of the viral envelope. The M protein plays a central role in the morphogenesis and assembly of the virus through protein interactions of the M-M, M-Spike (S) and M-nucleocapsid (N) type. The M protein is known to induce protective antibodies in pigs and to participate in the antagonistic response of the cellular antiviral system coordinated by the type I and type III interferon pathways. The 3D structure of the PEDV M protein is still unknown. The present work exposes a predicted 3D model of the M protein generated using the Robetta protocol. The M protein model is organized into a transmembrane and a globular region. The obtained 3D model of the PEDV M protein was compared with 3D models of the SARS-CoV-2 M protein created using neural networks and with initial machine learning-based models created using trRosetta. The 3D model of the present study predicted four linear B-cell epitopes (RSVNASSGTG and KHGDYSAVSNPSALT peptides are noteworthy), six discontinuous B-cell epitopes, forty weak binding and fourteen strong binding T-cell epitopes in the CV777 M protein. A high degree of conservation of the epitopes predicted in the PEDV M protein was observed among different PEDV strains isolated in different countries. The data suggest that the M protein could be a potential candidate for the development of new treatments or strategies that activate protective cellular mechanisms against viral diseases.


Subject(s)
Coronavirus Infections/virology , Coronavirus M Proteins/chemistry , Porcine epidemic diarrhea virus/chemistry , Swine Diseases/virology , Swine/virology , Amino Acid Sequence , Animals , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus M Proteins/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Models, Molecular , Porcine epidemic diarrhea virus/immunology , Protein Conformation , Swine Diseases/immunology
4.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1742486

ABSTRACT

Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) is composed of four structural proteins and several accessory non-structural proteins. SARS-CoV-2's most abundant structural protein, Membrane (M) protein, has a pivotal role both during viral infection cycle and host interferon antagonism. This is a highly conserved viral protein, thus an interesting and suitable target for drug discovery. In this paper, we explain the structural nature of M protein homodimer. To do so, we developed and applied a detailed and robust in silico workflow to predict M protein dimeric structure, membrane orientation, and interface characterization. Single Nucleotide Polymorphisms (SNPs) in M protein were retrieved from over 1.2 M SARS-CoV-2 genomes and proteins from the Global Initiative on Sharing All Influenza Data (GISAID) database, 91 of which were located at the predicted dimer interface. Among those, we identified SNPs in Variants of Concern (VOC) and Variants of Interest (VOI). Binding free energy differences were evaluated for dimer interfacial SNPs to infer mutant protein stabilities. A few high-prevalent mutated residues were found to be especially relevant in VOC and VOI. This realization may be a game-changer to structure-driven formulation of new therapeutics for SARS-CoV-2.


Subject(s)
Coronavirus M Proteins/genetics , Genome, Viral/genetics , Mutation , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Binding Sites/genetics , COVID-19/prevention & control , COVID-19/virology , Coronavirus M Proteins/chemistry , Coronavirus M Proteins/metabolism , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Protein Multimerization , SARS-CoV-2/physiology
5.
Front Immunol ; 13: 837443, 2022.
Article in English | MEDLINE | ID: covidwho-1742219

ABSTRACT

An ideal protective vaccine against SARS-CoV-2 should not only be effective in preventing disease, but also in preventing virus transmission. It should also be well accepted by the population and have a simple logistic chain. To fulfill these criteria, we developed a thermostable, orally administered vaccine that can induce a robust mucosal neutralizing immune response. We used our platform based on retrovirus-derived enveloped virus-like particles (eVLPs) harnessed with variable surface proteins (VSPs) from the intestinal parasite Giardia lamblia, affording them resistance to degradation and the triggering of robust mucosal cellular and antibody immune responses after oral administration. We made eVLPs expressing various forms of the SARS-CoV-2 Spike protein (S), with or without membrane protein (M) expression. We found that prime-boost administration of VSP-decorated eVLPs expressing a pre-fusion stabilized form of S and M triggers robust mucosal responses against SARS-CoV-2 in mice and hamsters, which translate into complete protection from a viral challenge. Moreover, they dramatically boosted the IgA mucosal response of intramuscularly injected vaccines. We conclude that our thermostable orally administered eVLP vaccine could be a valuable addition to the current arsenal against SARS-CoV-2, in a stand-alone prime-boost vaccination strategy or as a boost for existing vaccines.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Coronavirus M Proteins/immunology , Giardia lamblia/immunology , Intestinal Mucosa/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antigens, Protozoan/immunology , Cricetinae , Humans , Immunity , Immunization, Secondary , Immunoglobulin A/metabolism , Male , Mice , Mice, Inbred BALB C , Temperature , Vaccine Potency , Vaccines, Virus-Like Particle
6.
Front Immunol ; 13: 827605, 2022.
Article in English | MEDLINE | ID: covidwho-1742217

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a public health emergency of international concern, and an effective vaccine is urgently needed to control the pandemic. Envelope (E) and membrane (M) proteins are highly conserved structural proteins among SARS-CoV-2 and SARS-CoV and have been proposed as potential targets for the development of cross-protective vaccines. Here, synthetic DNA vaccines encoding SARS-CoV-2 E/M proteins (called p-SARS-CoV-2-E/M) were developed, and mice were immunised with three doses via intramuscular injection and electroporation. Significant cellular immune responses were elicited, whereas no robust humoral immunity was detected. In addition, novel H-2d-restricted T-cell epitopes were identified. Notably, although no drop in lung tissue virus titre was detected in DNA-vaccinated mice post-challenge with SARS-CoV-2, immunisation with either p-SARS-CoV-2-E or p-SARS-CoV-2-M provided minor protection and co-immunisation with p-SARS-CoV-2-E+M increased protection. Therefore, E/M proteins should be considered as vaccine candidates as they may be valuable in the optimisation of vaccination strategies against COVID-19.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Coronavirus Envelope Proteins/genetics , Coronavirus M Proteins/genetics , SARS-CoV-2/physiology , T-Lymphocytes/immunology , Animals , Antibodies, Viral/blood , COVID-19 Vaccines/genetics , Female , Humans , Immunization , Mice , Mice, Inbred BALB C , Vaccine Efficacy , Vaccines, DNA
7.
Front Immunol ; 13: 816220, 2022.
Article in English | MEDLINE | ID: covidwho-1686484

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) can trigger severe endemic waves and vaccine breakthrough infections (VBI). We analyzed the cellular and humoral immune response in 8 patients infected with the alpha variant, resulting in moderate to fatal COVID-19 disease manifestation, after double mRNA-based anti-SARS-CoV-2 vaccination. In contrast to the uninfected vaccinated control cohort, the diseased individuals had no detectable high-avidity spike (S)-reactive CD4+ and CD8+ T cells against the alpha variant and wild type (WT) at disease onset, whereas a robust CD4+ T-cell response against the N- and M-proteins was generated. Furthermore, a delayed alpha S-reactive high-avidity CD4+ T-cell response was mounted during disease progression. Compared to the vaccinated control donors, these patients also had lower neutralizing antibody titers against the alpha variant at disease onset. The delayed development of alpha S-specific cellular and humoral immunity upon VBI indicates reduced immunogenicity against the S-protein of the alpha VOC, while there was a higher and earlier N- and M-reactive T-cell response. Our findings do not undermine the current vaccination strategies but underline a potential need for the inclusion of VBI patients in alternative vaccination strategies and additional antigenic targets in next-generation SARS-CoV-2 vaccines.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Neutralizing/blood , BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibody Affinity/immunology , COVID-19/mortality , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Male , Middle Aged , Phosphoproteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
9.
Sci Rep ; 12(1): 1005, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1635617

ABSTRACT

The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a public health emergency, and research on the development of various types of vaccines is rapidly progressing at an unprecedented development speed internationally. Some vaccines have already been approved for emergency use and are being supplied to people around the world, but there are still many ongoing efforts to create new vaccines. Virus-like particles (VLPs) enable the construction of promising platforms in the field of vaccine development. Here, we demonstrate that non-infectious SARS-CoV-2 VLPs can be successfully assembled by co-expressing three important viral proteins membrane (M), envelop (E) and nucleocapsid (N) in plants. Plant-derived VLPs were purified by sedimentation through a sucrose cushion. The shape and size of plant-derived VLPs are similar to native SARS-CoV-2 VLPs without spike. Although the assembled VLPs do not have S protein spikes, they could be developed as formulations that can improve the immunogenicity of vaccines including S antigens, and further could be used as platforms that can carry S antigens of concern for various mutations.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Vaccines, Virus-Like Particle/immunology , Viroporin Proteins/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Coronavirus M Proteins/genetics , Coronavirus M Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Tobacco/immunology , Tobacco/metabolism , Tobacco/virology , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/metabolism , Viroporin Proteins/genetics , Viroporin Proteins/metabolism
10.
Cell Death Differ ; 29(7): 1395-1408, 2022 07.
Article in English | MEDLINE | ID: covidwho-1639275

ABSTRACT

Deaths caused by coronavirus disease 2019 (COVID-19) are largely due to the lungs edema resulting from the disruption of the lung alveolo-capillary barrier, induced by SARS-CoV-2-triggered pulmonary cell apoptosis. However, the molecular mechanism underlying the proapoptotic role of SARS-CoV-2 is still unclear. Here, we revealed that SARS-CoV-2 membrane (M) protein could induce lung epithelial cells mitochondrial apoptosis. Notably, M protein stabilized B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) via inhibiting its ubiquitination and promoted BOK mitochondria translocation. The endodomain of M protein was required for its interaction with BOK. Knockout of BOK by CRISPR/Cas9 increased cellular resistance to M protein-induced apoptosis. BOK was rescued in the BOK-knockout cells, which led to apoptosis induced by M protein. M protein induced BOK to trigger apoptosis in the absence of BAX and BAK. Furthermore, the BH2 domain of BOK was required for interaction with M protein and proapoptosis. In vivo M protein recombinant lentivirus infection induced caspase-associated apoptosis and increased alveolar-capillary permeability in the mouse lungs. BOK knockdown improved the lung edema due to lentivirus-M protein infection. Overall, M protein activated the BOK-dependent apoptotic pathway and thus exacerbated SARS-CoV-2 associated lung injury in vivo. These findings proposed a proapoptotic role for M protein in SARS-CoV-2 pathogenesis, which may provide potential targets for COVID-19 treatments.


Subject(s)
COVID-19 , Coronavirus M Proteins , Proto-Oncogene Proteins c-bcl-2 , Pulmonary Edema , Animals , Apoptosis , Coronavirus M Proteins/metabolism , Edema/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Pulmonary Edema/metabolism , SARS-CoV-2 , bcl-2-Associated X Protein/metabolism
11.
Infect Genet Evol ; 97: 105195, 2022 01.
Article in English | MEDLINE | ID: covidwho-1586990

ABSTRACT

SARS-CoV-2 is the RNA virus responsible for COVID-19, the prognosis of which has been found to be slightly worse in men. The present study aimed to analyze the expression of different mRNAs and their regulatory molecules (miRNAs and lncRNAs) to consider the potential existence of sex-specific expression patterns and COVID-19 susceptibility using bioinformatics analysis. The binding sites of all human mature miRNA sequences on the SARS-CoV-2 genome nucleotide sequence were predicted by the miRanda tool. Sequencing data was excavated using the Galaxy web server from GSE157103, and the output of feature counts was analyzed using DEseq2 packages to obtain differentially expressed genes (DEGs). Gene set enrichment analysis (GSEA) and DEG annotation analyses were performed using the ToppGene and Metascape tools. Using the RNA Interactome Database, we predicted interactions between differentially expressed lncRNAs and differentially expressed mRNAs. Finally, their networks were constructed with top miRNAs. We identified 11 miRNAs with three to five binding sites on the SARS-COVID-2 genome reference. MiR-29c-3p, miR-21-3p, and miR-6838-5p occupied four binding sites, and miR-29a-3p had five binding sites on the SARS-CoV-2 genome. Moreover, miR-29a-3p, and miR-29c-3p were the top miRNAs targeting DEGs. The expression levels of miRNAs (125, 181b, 130a, 29a, b, c, 212, 181a, 133a) changed in males with COVID-19, in whom they regulated ACE2 expression and affected the immune response by affecting phagosomes, complement activation, and cell-matrix adhesion. Our results indicated that XIST lncRNA was up-regulated, and TTTY14, TTTY10, and ZFY-AS1 lncRN as were down-regulated in both ICU and non-ICU men with COVID-19. Dysregulation of noncoding-RNAs has critical effects on the pathophysiology of men with COVID-19, which is why they may be used as biomarkers and therapeutic agents. Overall, our results indicated that the miR-29 family target regulation patterns and might become promising biomarkers for severity and survival outcome in men with COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Computational Biology/methods , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Coronavirus M Proteins/genetics , Coronavirus M Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Databases, Genetic , Female , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Male , MicroRNAs/classification , MicroRNAs/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , RNA, Long Noncoding/classification , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Severity of Illness Index , Sex Factors , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
12.
FEBS Open Bio ; 12(1): 285-294, 2022 01.
Article in English | MEDLINE | ID: covidwho-1540045

ABSTRACT

Cepharanthine (CEP) is a natural biscoclaurine alkaloid of plant origin and was recently demonstrated to have anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) activity. In this study, we evaluated whether natural analogues of CEP may act as potential anti-coronavirus disease 2019 drugs. A total of 24 compounds resembling CEP were extracted from the KNApSAcK database, and their binding affinities to target proteins, including the spike protein and main protease of SARS-CoV-2, NPC1 and TPC2 in humans, were predicted via molecular docking simulations. Selected analogues were further evaluated by a cell-based SARS-CoV-2 infection assay. In addition, the efficacies of CEP and its analogue tetrandrine were assessed. A comparison of the docking conformations of these compounds suggested that the diphenyl ester moiety of the molecules was a putative pharmacophore of the CEP analogues.


Subject(s)
Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , COVID-19/prevention & control , Plant Preparations/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Benzylisoquinolines/chemistry , Benzylisoquinolines/metabolism , COVID-19/virology , Chlorocebus aethiops , Coronavirus M Proteins/antagonists & inhibitors , Coronavirus M Proteins/chemistry , Coronavirus M Proteins/metabolism , Drug Evaluation, Preclinical/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Preparations/chemistry , Plant Preparations/metabolism , Protein Binding , Protein Conformation , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Stephania/chemistry , Vero Cells
13.
Int J Mol Sci ; 22(21)2021 Nov 04.
Article in English | MEDLINE | ID: covidwho-1502440

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains spike proteins that assist the virus in entering host cells. In the absence of a specific intervention, efforts are afoot throughout the world to find an effective treatment for SARS-CoV-2. Through innovative techniques, monoclonal antibodies (MAbs) are being designed and developed to block a particular pathway of SARS-CoV-2 infection. More than 100 patent applications describing the development of MAbs and their application against SARS-CoV-2 have been registered. Most of them target the receptor binding protein so that the interaction between virus and host cell can be prevented. A few monoclonal antibodies are also being patented for the diagnosis of SARS-CoV-2. Some of them, like Regeneron® have already received emergency use authorization. These protein molecules are currently preferred for high-risk patients such as those over 65 years old with compromised immunity and those with metabolic disorders such as obesity. Being highly specific in action, monoclonal antibodies offer one of the most appropriate interventions for both the prevention and treatment of SARS-CoV-2. Technological advancement has helped in producing highly efficacious MAbs. However, these agents are known to induce immunogenic and non-immunogenic reactions. More research and testing are required to establish the suitability of administering MAbs to all patients at risk of developing a severe illness. This patent study is focused on MAbs as a therapeutic option for treating COVID-19, as well as their invention, patenting information, and key characteristics.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19 Drug Treatment , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Monoclonal/immunology , COVID-19/diagnosis , COVID-19/virology , Coronavirus M Proteins/immunology , Humans , Patents as Topic , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology
14.
Curr Top Med Chem ; 21(16): 1429-1438, 2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1468281

ABSTRACT

As a part of the efforts to quickly develop pharmaceutical treatments for COVID-19 through repurposing existing drugs, some researchers around the world have combined the recently released crystal structure of SARS-CoV-2 Mpro in complex with a covalently bonded inhibitor with virtual screening procedures employing molecular docking approaches. In this context, protease inhibitors (PIs) clinically available and currently used to treat infectious diseases, particularly viral ones, are relevant sources of promising drug candidates to inhibit the SARS-CoV-2 Mpro, a key viral enzyme involved in crucial events during its life cycle. In the present perspective, we summarized the published studies showing the promising use of HIV and HCV PIs as potential repurposing drugs against the SARS-CoV-2 Mpro.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus M Proteins/antagonists & inhibitors , Drug Repositioning , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Binding Sites , COVID-19/virology , Coronavirus M Proteins/chemistry , Coronavirus M Proteins/genetics , Coronavirus M Proteins/metabolism , Humans , Kinetics , Models, Molecular , Molecular Targeted Therapy , Protease Inhibitors/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Randomized Controlled Trials as Topic , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Thermodynamics
15.
Front Immunol ; 12: 724060, 2021.
Article in English | MEDLINE | ID: covidwho-1430701

ABSTRACT

Thirty-five peptides selected from functionally-relevant SARS-CoV-2 spike (S), membrane (M), and envelope (E) proteins were suitably modified for immunising MHC class II (MHCII) DNA-genotyped Aotus monkeys and matched with HLA-DRß1* molecules for use in humans. This was aimed at producing the first minimal subunit-based, chemically-synthesised, immunogenic molecules (COLSARSPROT) covering several HLA alleles. They were predicted to cover 48.25% of the world's population for 6 weeks (short-term) and 33.65% for 15 weeks (long-lasting) as they induced very high immunofluorescent antibody (IFA) and ELISA titres against S, M and E parental native peptides, SARS-CoV-2 neutralising antibodies and host cell infection. The same immunological methods that led to identifying new peptides for inclusion in the COLSARSPROT mixture were used for antigenicity studies. Peptides were analysed with serum samples from patients suffering mild or severe SARS-CoV-2 infection, thereby increasing chemically-synthesised peptides' potential coverage for the world populations up to 62.9%. These peptides' 3D structural analysis (by 1H-NMR acquired at 600 to 900 MHz) suggested structural-functional immunological association. This first multi-protein, multi-epitope, minimal subunit-based, chemically-synthesised, highly immunogenic peptide mixture highlights such chemical synthesis methodology's potential for rapidly obtaining very pure, highly reproducible, stable, cheap, easily-modifiable peptides for inducing immune protection against COVID-19, covering a substantial percentage of the human population.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Coronavirus Envelope Proteins/immunology , Coronavirus M Proteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Aotidae , COVID-19/prevention & control , HLA-DRB1 Chains/genetics , Humans , Peptides/immunology , SARS-CoV-2/immunology
16.
Viruses ; 13(9)2021 09 09.
Article in English | MEDLINE | ID: covidwho-1411084

ABSTRACT

A variety of immunolabeling procedures for both light and electron microscopy were used to examine the cellular origins of the host membranes supporting the SARS-CoV-2 replication complex. The endoplasmic reticulum has long been implicated as a source of membrane for the coronavirus replication organelle. Using dsRNA as a marker for sites of viral RNA synthesis, we provide additional evidence supporting ER as a prominent source of membrane. In addition, we observed a rapid fragmentation of the Golgi apparatus which is visible by 6 h and complete by 12 h post-infection. Golgi derived lipid appears to be incorporated into the replication organelle although protein markers are dispersed throughout the infected cell. The mechanism of Golgi disruption is undefined, but chemical disruption of the Golgi apparatus by brefeldin A is inhibitory to viral replication. A search for an individual SARS-CoV-2 protein responsible for this activity identified at least five viral proteins, M, S, E, Orf6, and nsp3, that induced Golgi fragmentation when expressed in eukaryotic cells. Each of these proteins, as well as nsp4, also caused visible changes to ER structure as shown by correlative light and electron microscopy (CLEM). Collectively, these results imply that specific disruption of the Golgi apparatus is a critical component of coronavirus replication.


Subject(s)
Endoplasmic Reticulum/virology , Golgi Apparatus/virology , SARS-CoV-2/physiology , Virus Replication , Animals , Chlorocebus aethiops , Coronavirus M Proteins/physiology , Coronavirus M Proteins/ultrastructure , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/ultrastructure , Humans , Intracellular Membranes/ultrastructure , Intracellular Membranes/virology , Microscopy, Electron , SARS-CoV-2/ultrastructure , Vero Cells , Viral Structural Proteins/physiology , Viral Structural Proteins/ultrastructure
17.
Int J Mol Sci ; 22(3)2021 Jan 30.
Article in English | MEDLINE | ID: covidwho-1389390

ABSTRACT

The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 229E, Human/metabolism , Dipeptides/chemistry , Ketones/chemistry , A549 Cells , Antiviral Agents/pharmacology , Binding Sites , COVID-19/pathology , COVID-19/virology , Cell Line , Coronavirus M Proteins/chemistry , Coronavirus M Proteins/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Thermodynamics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism , Virus Replication/drug effects
18.
Brief Bioinform ; 22(2): 1361-1377, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1352114

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a dreaded pandemic in lack of specific therapeutic agent. SARS-CoV-2 Mpro, an essential factor in viral pathogenesis, is recognized as a prospective therapeutic target in drug discovery against SARS-CoV-2. To tackle this pandemic, Food and Drug Administration-approved drugs are being screened against SARS-CoV-2 Mpro via in silico and in vitro methods to detect the best conceivable drug candidates. However, identification of natural compounds with anti-SARS-CoV-2 Mpro potential have been recommended as rapid and effective alternative for anti-SARS-CoV-2 therapeutic development. Thereof, a total of 653 natural compounds were identified against SARS-CoV-2 Mpro from NP-lib database at MTi-OpenScreen webserver using virtual screening approach. Subsequently, top four potential compounds, i.e. 2,3-Dihydroamentoflavone (ZINC000043552589), Podocarpusflavon-B (ZINC000003594862), Rutin (ZINC000003947429) and Quercimeritrin 6"-O-L-arabinopyranoside (ZINC000070691536), and co-crystallized N3 inhibitor as reference ligand were considered for stringent molecular docking after geometry optimization by DFT method. Each compound exhibited substantial docking energy >-12 kcal/mol and molecular contacts with essential residues, including catalytic dyad (His41 and Cys145) and substrate binding residues, in the active pocket of SARS-CoV-2 Mpro against N3 inhibitor. The screened compounds were further scrutinized via absorption, distribution, metabolism, and excretion - toxicity (ADMET), quantum chemical calculations, combinatorial molecular simulations and hybrid QM/MM approaches. Convincingly, collected results support the potent compounds for druglikeness and strong binding affinity with the catalytic pocket of SARS-CoV-2 Mpro. Hence, selected compounds are advocated as potential inhibitors of SARS-CoV-2 Mpro and can be utilized in drug development against SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus M Proteins/drug effects , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Humans , Molecular Dynamics Simulation , Quantum Theory
19.
J Nutr Biochem ; 98: 108821, 2021 12.
Article in English | MEDLINE | ID: covidwho-1309296

ABSTRACT

Membrane glycoprotein is the most abundant protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but its role in coronavirus disease 2019 (COVID-19) has not been fully characterized. Mice intranasally inoculated with membrane glycoprotein substantially increased the interleukin (IL)-6, a hallmark of the cytokine storm, in bronchoalveolar lavage fluid (BALF), compared to mice inoculated with green fluorescent protein (GFP). The high level of IL-6 induced by membrane glycoprotein was significantly diminished in phosphodiesterase 4 (PDE4B) knockout mice, demonstrating the essential role of PDE4B in IL-6 signaling. Mycelium fermentation of Lactobacillus rhamnosus (L. rhamnosus) EH8 strain yielded butyric acid, which can down-regulate the PDE4B expression and IL-6 secretion in macrophages. Feeding mice with mycelia increased the relative abundance of commensal L. rhamnosus. Two-week supplementation of mice with L. rhamnosus plus mycelia considerably decreased membrane glycoprotein-induced PDE4B expression and IL-6 secretion. The probiotic activity of L. rhamnosus plus mycelia against membrane glycoprotein was abolished in mice treated with GLPG-0974, an antagonist of free fatty acid receptor 2 (Ffar2). Activation of Ffar2 in the gut-lung axis for down-regulation of the PDE4B-IL-6 signalling may provide targets for development of modalities including probiotics for treatment of the cytokine storm in COVID-19.


Subject(s)
Coronavirus M Proteins/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Interleukin-6/metabolism , Lacticaseibacillus rhamnosus/physiology , Probiotics/pharmacology , SARS-CoV-2/metabolism , Animals , Butyric Acid , Cell Line , Cloning, Molecular , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Female , Fermentation , Gene Expression Regulation/drug effects , Humans , Interleukin-6/genetics , Mice , Mice, Inbred ICR , Receptors, G-Protein-Coupled/metabolism
20.
Biochem Biophys Res Commun ; 565: 8-13, 2021 08 06.
Article in English | MEDLINE | ID: covidwho-1252489

ABSTRACT

Amidst infectious disease outbreaks, a practical tool that can quantitatively monitor individuals' antibodies to pathogens is vital for disease control. The currently used serological lateral flow immunoassays (LFIAs) can only detect the presence of antibodies for a single antigen. Here, we fabricated a multiplexed circular flow immunoassay (CFIA) test strip with YOLO v4-based object recognition that can quickly quantify and differentiate antibodies that bind membrane glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or hemagglutinin of influenza A (H1N1) virus in the sera of immunized mice in one assay using one sample. Spot intensities were found to be indicative of antibody titers to membrane glycoprotein of SARS-CoV-2 and were, thus, quantified relative to spots from immunoglobulin G (IgG) reaction in a CFIA to account for image heterogeneity. Quantitative intensities can be displayed in real time alongside an image of CFIA that was captured by a built-in camera. We demonstrate for the first time that CFIA is a specific, multi-target, and quantitative tool that holds potential for digital and simultaneous monitoring of antibodies recognizing various pathogens including SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , Coronavirus M Proteins/immunology , Immunoassay/methods , SARS-CoV-2/immunology , Animals , COVID-19/virology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL